Derivative Techniques Mini Review

1. If $f(x)=7 x^{3}-5 x^{2}+8 x-400$, then $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=$ \qquad
2. $\frac{d}{d x}\left[\sqrt[4]{x^{3}}\right]=$ \qquad
3. $\frac{d}{d x}\left[-\frac{8}{x^{5}}\right]=$ \qquad

* Use the scenario below to answer questions $4-9$

Water flows into a pipe that has a hole in it that increases in size as more water flows into it. The amount of water in the pipe is modeled by the function $w(t)=6 t-t^{2}$, where t is measured in minutes and $w(t)$ is measured in gallons.
4. What is the value of $w(2)$ and what does it represent in the context of this problem? Include units of measure.
5. What is the average rate of change of the water in the pipe from $t=1$ to $t=4$ minutes?
6. When does $w^{\prime}(t)=0$? What does it represent in the context of this problem? Include units of measure.
7. When does $w^{\prime}(t)=-2$? What does it represent in the context of this problem? Include units of measure.
8. When does the graph of $g(x)=\frac{1}{3} x^{3}+3 x^{2}-27 x+4$ have horizontal tangents?
9. For $y=5 x^{4}-8 x^{3}+10 x^{2}+19 x-43$, find:

$$
\begin{array}{ll}
\frac{d y}{d x}= & \frac{d^{3} y}{d x^{3}}= \\
y^{\prime \prime}= & y^{(4)}= \\
\hline
\end{array}
$$

10. For $f(x)=4 x^{3}-5 x^{2}+3 x-7$:
A. Find the equation of the tangent line of $f(x)$ at $x=-2$ \qquad
B. Find the equation of the normal line of $f(x)$ at $x=-2$.
11. Given the graph of $g(x)$ below, arrange the values of $g^{\prime}(b), g^{\prime}(c)$, and $g^{\prime}(d)$ in order from least to greatest.

12. If $f(x)=\left(x^{2}-9\right)^{5}$, then $f^{\prime}(x)=$ \qquad
13. $\frac{d}{d x}\left[\sin ^{4}(8 x+3)\right]=$
14. If $f(x)=\sqrt{4 x}$, then $f^{\prime}(36)=$ \qquad
15. Match the graphs of $f(x)$ with the derivative $f^{\prime}(x)$. ($\mathrm{F}=$ Function, $\mathrm{D}=$ Derivative $)$

F1 \qquad F2 \qquad F3 \qquad F4 \qquad F5 \qquad F6 \qquad

* Use the graph of $g(x)$ below to answer questions $16-21$.

16. Name all locations where $g(x)$ is not continuous.
17. Name all locations where $g(x)$ is not differentiable.

18 . Where is $g(x)$ continuous, but not differentiable?
19. $\lim _{x \rightarrow-3} \frac{g(x)-g(-3)}{x+3}=g(5) \quad$ (True or False)
20. $\lim _{x \rightarrow 0} g(x)=g^{\prime}(-2)$
(True or False)

21. $\lim _{h \rightarrow 0} \frac{g(4+h)-g(4)}{h}=g^{\prime}(-1) \quad$ (True or False)

* Use the graphs of $f(x)$ and $g(x)$ below to answer questions $22-26$.

22. If $h(x)=f(x) \cdot g(x)$, then $h^{\prime}(4)=$ \qquad
23. If $r(x)=\frac{f(x)}{g(x)}$, then $r^{\prime}(1)=$ \qquad
24. If $p(x)=\frac{g(x)}{f(x)}$, then $p^{\prime}(2)=$ \qquad
25. If $\mathrm{d}(x)=f(g(x))$, then $d^{\prime}(3)=$ \qquad
26. If $\mathrm{w}(x)=g(f(x))$, then $w^{\prime}(1)=$ \qquad
